Synthesis and structure of cycloalkane- and norbornane-condensed 6-aryl-1,2,4,5-tetrahydropyridazinones

Ferenc Csende, Anasztázia Hetényi, Géza Stájer and Ferenc Fülöp*
Institute of Pharmaceutical Chemistry, University of Szeged, POB 121, H-6701, Szeged, Hungary
Received November 11, 2003

Dedicated to Prof. Sándor Antus on the occasion of his $60^{\text {th }}$ birthday.

Abstract

The $\mathrm{C}=\mathrm{N}$ double bond of certain cis- or trans-cycloalkane and diexo- or diendo-norbornane-condensed pyridazinones was reduced with $\mathrm{NaBH}_{3} \mathrm{CN}$. The cis- or trans nature of the starting cycloalkane derivatives was always retained in the saturated products, with a high degree of diastereoselectivity: the hydrogen on the new stereocenter and the annelational hydrogen next to the carbonyl always exhibited the same steric orientation. The stereostructures were determined by means of nmr measurements and confirmed by molecular modelling.

J. Heterocyclic Chem., 41, 259 (2004).

Numerous cycloalkane-condensed 4,5-dihydropyri-dazin-3(2 H)-ones have recently been prepared [1-3] and dehydrogenated with SOCl_{2} in benzene and with CuCl_{2} in $\mathrm{CH}_{3} \mathrm{CN}[4,5]$ or reacted with $\mathrm{Zn} / \mathrm{HCl}$, which leads to a diastereoselective reductive ring contraction [6]. The selective reduction and ring transformation of pyridazinones and phthalazinones are carried out under similar conditions $[7,8]$. By cleavage of the $\mathrm{N}-\mathrm{N}$ bond, the reduction of phthalazinones with $\mathrm{BH}_{3} /$ THF affords α-substituted 1,2-benzenedimethanamines [9]. The hydrogenation of pyridazinones with LiAlH_{4} furnishes the partially reduced 1,4,5,6-tetrahydropyridazinones [10], which behave as nonsteroidal progesterone receptor ligands [11]. For saturation of the $\mathrm{C}=\mathrm{N}$ bond in pyridazinones, sodium cyanoborohydride $\left(\mathrm{NaBH}_{3} \mathrm{CN}\right)$ was found to be a mild, simple and regioselective reducing agent; its application has been well documented and reviewed in detail [12]. In this way, the macrocyclic dilactam skeleton of peptidal antibiotics (e.g. glidobactin A) [13] and 1,2-diazetid-3ones has been prepared [14].
Our present investigation was focused on the saturation of cycloalkane-condensed pyridazinones by the applica-
tion of $\mathrm{NaBH}_{3} \mathrm{CN}$ in an effort to attain diastereoselectivity.
Results.
For saturation of the double bond in the bicyclic cis- or trans-cyclohexane- and tricyclic, norbornane-condensed dihydropyridazinones $\mathbf{6 - 1 0}, 16$ and 17 , which are easily accessible via the reactions of cis- ortrans-2-p-toluoylcy-cloalkane- or diexo- and diendo-norbornanecarboxylic acids [15] with hydrazine [1], $\mathrm{NaBH}_{3} \mathrm{CN}$ in MeOH solution was added in portions at $0{ }^{\circ} \mathrm{C}$, followed by hydrochloric acid dropwise (Schemes 1 and 2). The mixtures were made slightly alkaline and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the products were purified by column chromatography. In all cases, only a single diastereomer could be isolated. The trans dihydropyridazine $\mathbf{1 0}$ gave the saturatedtrans product $\mathbf{1 5}$.

For the diendo-norbornane-fused derivative 19, only a markedly poor (28\%) yield was obtained, whereas all the other reactions resulted in the saturated derivatives in good to excellent yields (75-94\%). The reason for this poor yield of $\mathbf{1 9}$ might be that the diendo position is sterically hindered as concerns nucleophilic attack by cyanoboro-

Scheme 1

$$
\mathrm{n}=1(\mathbf{1}, \mathbf{6}, \mathbf{1 1}) ; \mathrm{n}=2(\mathbf{2}, 7, \mathbf{1 2}) ; \mathrm{n}=3(\mathbf{3}, \mathbf{8}, \mathbf{1 3}) ; \mathrm{n}=4(\mathbf{4}, \mathbf{9}, \mathbf{1 4})
$$

hydride on the polar $\mathrm{C}=\mathrm{N}$ bond. The unreacted 17 could be recovered after chromatographic purification.

Scheme 2

Structure.
In the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra of the products $\mathbf{1 1 - 1 5 , 1 8}$ and $\mathbf{1 9}$, the signals of the annelational hydrogens appear in the region 4.36-4.43 ppm and the COSY connectivities confirm most of the assignments. The protons and carbons chemical shifts can be assigned via HSQC and HMBC experiments [16,17]. The relative positions of the annelational hydrogens were deduced from the J-couplings and the NOESY spectra. J of H-6 shows $\sim 3 \mathrm{~Hz}$ for 13-14 cisand 8.6 Hz for $\mathbf{1 5}$ trans arrangement between H-6 and H-5. J of H-4 is 8.6 Hz for $\mathbf{1 8}$, which is a typical value for diexo

Figure 1. Stereoview of typical minimum-energy structures for $\mathbf{1 4}, \mathbf{1 5}, 18$ and 19.
compound. The NOE cross-peak for the protons at positions 4 and 5 shows that the arrangement is cis for compounds 11-14, diexo for 18, trans for 15, and diendo for 19. The configurations of the aryl-substituted carbon in 11-15, $\mathbf{1 8}, \mathbf{1 9}$, i.e. the stereoposition of the hydrogen on this carbon, were determined by means of NOE, where the crosspeak of H-4 and H-6 proves their cis arrangement.

The structures were confirmed by molecular modelling. The conformational protocol comprised a stochastic search, using the Merck Molecular Force Field (MMFF94) [18]. Figure 1 depicts a stereoview of the typical minimum-energy molecular structures for pyridazines $\mathbf{1 4}, \mathbf{1 5}, 18$ and 19.

It was concluded that cyanoborohydride successfully reduced these (bi)cycloalkane-condensed pyridazinones with a high degree of diastereoselectivity: in the saturated products, the hydrogen atom on the new stereocentre and the annelational hydrogen next to the carbonyl are always cis.

EXPERIMENTAL

Melting points are uncorrected. ${ }^{1} \mathrm{H} \mathrm{nmr}$, NOESY, COSY, HSQC and HMBC spectra were recorded on a Bruker Avance DRX 400 MHz spectrometer (mixing time for the NOESY spectrum $=0.4 \mathrm{~s}) . \mathrm{CDCl}_{3}$ was used as solvent; the concentration of the samples was $20 \mathrm{mg} / \mathrm{mL}$. Chemical shifts: δ, in ppm, TMS as an internal standard, coupling constants (J values) in Hz. The conformational search protocol comprised a stochastic search using MMFF94 implemented in the Chemical Computing Group's MOE software.

General Procedure for the Preparation of 11-15 and 18, 19.

To a solution of the pyridazinone (6: $4.00 \mathrm{~g}, 7: 4.28 \mathrm{~g}, \mathbf{8}$: $4.56 \mathrm{~g}, \mathbf{9}: 4.84 \mathrm{~g}, \mathbf{1 0}: 4.84 \mathrm{~g}, \mathbf{1 6}: 5.08 \mathrm{~g}, \mathbf{1 7}: 5.08 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL}), \mathrm{NaBH}_{3} \mathrm{CN}(2.51 \mathrm{~g}, 40 \mathrm{mmol})$ was added in portions at $0^{\circ} \mathrm{C}$, and $\mathrm{HCl}(36 \% 4 \mathrm{~mL})$ was then added dropwise. The mixture was stirred at room temperature for 2-3 h. After the dropwise addition of $\mathrm{NaOH}(\mathrm{N})$ until the solid has dissolved (pH $\sim 7.5-8.0$), the solution was evaporated down and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 20 \mathrm{~mL}$) and purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then EtOAc). The eluates were evaporated down and the residue was crystallized from EtOAc.
6-(p-Tolyl)-cis-4,5-cyclopropa-1,4,5,6-tetrahydropyridazin$3(2 H)$-one (11).

This compound was obtained in 88% yield (3.56 g), mp 182$184^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ nmr: 1.36 (ddd, $1 \mathrm{H}, \mathrm{H}-7, \mathrm{~J}=6.3,7.6,13.6 \mathrm{~Hz}$), 1.65 (q, 1H, H-7, J = 5.3 Hz), 1.87 (ddd, $1 \mathrm{H}, \mathrm{H}-4, \mathrm{~J}=4.5,9.3 \mathrm{~Hz}$), 1.98-2.06 (m, 1H, H-5), 2.35 (s, 3H, CH ${ }_{3}$), 4.36 (s, 1H, H-6), 7.18 (d, 2H, H-3', H-5', J = 7.8 Hz), 7.37 (d, 2H, H-2', H-6', J = 7.8 $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ nmr: $6.9\left(\mathrm{CH}_{2}\right), 16.8(\mathrm{C}-4), 21.4\left(\mathrm{CH}_{3}\right), 22.0(\mathrm{C}-5)$, 55.7 (C-6), 128.1 (C-2', C-6'), 129.6 (C-3', C-5'), 135.2 (C-1'), 138.5 (C-4'), 172.7 (C-3).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$: C, 71.26; H, 6.98; N, 13.85. Found. C, 71.35; H, 7.04; N, 13.89.

6-(p-Tolyl)-cis-4,5-cyclobuta-1,4,5,6-tetrahydropyridazin$3(2 \mathrm{H})$-one (12).

This compound was obtained in 91% yield (3.94 g), mp 185-187 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ nmr: $1.90-2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 2.04-2.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8$ and
$\mathrm{H}-7$), 2.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.53-2.70 (m, 1H, H-8), 3.25-3.45 (m, 2H, $\mathrm{H}-5$ and $\mathrm{H}-4$), 4.16 (d, 1H, H-6, J = 3.3 Hz), 7.09-7.21 (m, 4H, H-2', H-3', H-5', H-6'), 7.72 (bs, 1H, NH); ${ }^{13}$ C nmr: 19.1 (C-8), 21.5 $\left(\mathrm{CH}_{3}\right), 23.8$ (C-7), 37.2 (C-5), 37.5 (C-4), 59.0 (C-6), 127.1 (C-2', C-6'), 129.6 (C-3', C-5'), 134.2 (C-1'), 137.6 (C-4'), 176.0 (C-3).

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 72.19 ; \mathrm{H}, 7.46 ; \mathrm{N}, 12.95$. Found. C, 72.31; H, 7.52; N, 13.03.
6-(p-Tolyl)-cis-4,5-cyclopenta-1,4,5,6-tetrahydropyridazin$3(2 H)$-one (13).
This compound was obtained in 95% yield (4.37 g), mp 179$180^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ nmr: 1.15-1.29 (m, 1H, H-9), 1.39-1.54 (m, 2H, H-8 and H-7), 1.63-1.80 (m, 2H, H-9 and H-8), 2.15-2.26 (m, 1H, H9), $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.75-2.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.97$ (dd, $1 \mathrm{H}, \mathrm{H}-4$, $\mathrm{J}=9.1,16.4 \mathrm{~Hz}), 4.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6, \mathrm{~J}=2.8 \mathrm{~Hz}), 7.10-7.15(\mathrm{~m}, 4 \mathrm{H}$, H-2', H-3', H-5', H-6'), 8.60 (bs, 1H, NH); ${ }^{13} \mathrm{C} \mathrm{nmr:} 21.4\left(\mathrm{CH}_{3}\right)$, 26.4 (C-8), 27.1 (C-9), 32.9 (C-7), 43.8 (H-4), 44.1 (H-5), 60.2 (H-6), 126.3 (C-2', C-6'), 129.4 (C-3', C-5'), 136.5 (C-1'), 136.8 (C-4'), 176.7 (C-3).
Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 73.01 ; \mathrm{H}, 7.88 ; \mathrm{N}, 12.16$. Found. C, 73.23; H, 7.96; N, 12.21.

6-(p-Tolyl)-cis-4,5-cyclohexa-1,4,5,6-tetrahydropyridazin3 ($2 H$)-one (14).

This compound was obtained in 72% yield (3.52 g), mp 170$172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ nmr: $1.04-1.28$ (m, 3H, H-10, H-8, H-9), 1.34-1.48 (m, 2H, H-10, H-7), 1.54-1.64 (m, 1H, H-8), 1.71-1.79 (m, 1H, H-9), 2.18-2.27 (m, 1H, H-5), 2.34 (s, 3H, CH3), 2.57 (dt, $1 \mathrm{H}, \mathrm{H}-$ $7, \mathrm{~J}=1.7,13.6 \mathrm{~Hz}), 2.85(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-4, \mathrm{~J}=5.4 \mathrm{~Hz}), 4.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-$ $6, \mathrm{~J}=2.3 \mathrm{~Hz}$), 7.16 ($\left.\mathrm{s}, 4 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} 5^{\prime}, \mathrm{H}^{\prime} \mathrm{6}^{\prime}\right), 8.16$ (bs, 1 H , $\mathrm{NH}) ;{ }^{13} \mathrm{C}$ nmr: $21.4\left(\mathrm{CH}_{3}\right), 22.3$ (C-10), 23.3 (C-8), 25.4 (C-9), 26.5 (C-7), 38.9 (C-5), 42.0 (C-4), 61.2 (C-6), 126.2 (C-2', C-6'), 129.5 (C-3', C-5'), 135.4 (C-1'), 137.3 (C-4'), 172.7 (C-3).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 73.74 ; \mathrm{H}, 8.25 ; \mathrm{N}, 11.47$. Found. C, 73.87; H, 8.30; N, 11.51.

6-(p-Tolyl)-trans-4,5-cyclohexa-1,4,5,6-tetrahydropyridazin$3(2 \mathrm{H})$-one (15).
This compound was obtained in 80% yield (3.91 g), mp 198$200^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ nmr: $1.10-1.59$ (m, 4H, H-10, H-9, H-8, H-7), 1.741.99 (m, 4H, H-5, H-10, H-9, H-8), 2.19-2.40 (m, 2H, H-4, H-7), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6, \mathrm{~J}=8.6 \mathrm{~Hz}), 7.20-7.25(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$), $7.25-7.30$ (m, 2H, H-2', H-6'); ${ }^{13} \mathrm{C} \mathrm{nmr:} 21.5$ $\left(\mathrm{CH}_{3}\right), 25.9$ (C-9, C-8), 26.2 (C-7), 31.5 (C-10), 44.4 (C-4), 46.2 (C-5), 65.0 (C-6), 127.4 (C-2', C-6'), 129.8 (C-3', C-5'), 138.0 (C$\left.4^{\prime}\right), 138.3$ (C-1'), 176.2 (C-3).
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 73.74 ; \mathrm{H}, 8.25 ; \mathrm{N}, 11.47$. Found. C, 73.79; H, 8.33; N, 11.40.

6-(p-Tolyl)-4,5-diexo-norborna-1,4,5,6-tetrahydropyridazin$3(2 H)$-one (18).

This compound was obtained in 67% yield 3.43 g , mp 227-229 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ nmr: $1.23-1.36$ (m, 2H, H-11, H-8), 1.40-1.55 (m, 2H, H-8, H-9), 1.58-1.64 (m, 1H, H-11), 1.70-1.80 (m, 1H, H-9), 2.13 (s, $1 \mathrm{H}, \mathrm{H}-10$), 2.41 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H}-5, \mathrm{CH}_{3}$), 2.75 (d, 1H, H-4, J = 8.6 Hz), 2.83 (d, 1H, H-7, J = 3.8 Hz), 4.30 (d, 1H, H-6, J = 3.8 Hz), 7.227.27 (m, 4H, H-2', H-3', H-5', H-6'), 7.75 (bs, 1H, NH); ${ }^{13} \mathrm{C}$ nmr: $21.1\left(\mathrm{CH}_{3}\right), 28.5(\mathrm{C}-9), 31.7(\mathrm{C}-8), 36.8$ (C-10), 37.2 (C-11), 44.0
(C-7), 47.2 (C-5), 50.2 (C-4), 60.1 (C-6), 126.2 (C-2', C-6'), 129.4
(C-3', C-5'), 136.3 (C-4'), 136.9 (C-1'), 174.6 (C-3).
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.97 ; \mathrm{H}, 7.86 ; \mathrm{N}, 10.93$. Found. C, 75.12; H, 7.81; N, 10.85.
6-(p-Tolyl)-4,5-diendo-norborna-1,4,5,6-tetrahydropyridazin$3(2 H)$-one (19).

This compound was obtained in 28% yield (1.43 g), mp 212$214^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{nmr}$: $1.12-1.65(\mathrm{~m}, 7 \mathrm{H}, 2 \times \mathrm{H}-9,2 \times \mathrm{H}-8, \mathrm{H}-7,2 \times \mathrm{H}-$ 11), $2.20(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-10, \mathrm{~J}=3.7 \mathrm{~Hz}), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.62-2.71$ (m, 1H, H-5), 2.87-2.95 (m, 1H, H-4), 4.43 (d, 1H, H-6, J = 5.6 Hz), 7.06-7.14 (m, 4H, H-2', H-3', H-5', H-6'); ${ }^{13} \mathrm{C}$ nmr: 21.4 $\left(\mathrm{CH}_{3}\right), 24.3$ (C-9), 26.2 (C-8), 40.6 (C-10), 41.4 (C-11), 42.1 (C7), 42.9 (C-5), 45.6 (C-4), 60.6 (C-6), 126.0 (C-2', C-6'), 129.6 (C-3', C-5'), 136.1 (C-1'), 136.9 (C-4'), 174.5 (C-3).
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.97$; $\mathrm{H}, 7.86 ; \mathrm{N}, 10.93$. Found. C, 75.08; H, 7.93; N, 11.04

Acknowledgements.
The authors express their thanks to the Hungarian Research Foundation (OTKA grants T 37204 and TS 40888) for financial support.

REFERENCES AND NOTES

[*] Author to whom correspondence should be addressed. E-mail: fulop@pharma.szote.u-szeged.hu
[1] G. Stájer, F. Csende, G. Bernáth, P. Sohár and J. Szúnyog, Monatsh. Chem., 125, 933 (1994).
[2] G. Stájer, A. E. Szabó, G. Bernáth and P. Sohár, Heterocycles, 38, 1061 (1994).
[3] F. Csende, G. Bernáth, Z. Böcskei, P. Sohár and G. Stájer, Heterocycles, 45, 323 (1997).
[4] F. Csende and Z. Szabó, Synth. Commun., 23, 2957 (1993).
[5] F. Csende, Z. Szabó, G. Bernáth and G. Stájer, Synthesis, 1240 (1995).
[6] F. Csende, Z. Szabó and G. Stájer, Heterocycles, 36, 1809 (1993).
[7] G. R. Brown, A. J. Foubister and B. Wright, J. Chem. Soc., Chem. Commun., 1373 (1984).
[8] S. Gabriel and A. Neumann, Ber. dtsch. Chem. Ges. 26, 524 (1893).
[9] R. E. Johnson, J. T. Hane, D. C. Schlegel, R. B. Perni, J. L. Herrmann, Jr., C. J. Opalka, P. M. Carabateas, J. H. Ackerman, J. Swestock, N. C. Birsner and J. H. Tatlock, J. Org. Chem., 56, 5218 (1991).
[10] J. L. Aubagnac, J. Elquero, R. Jacquier and R. Robert, Bull. Chem. Soc. Fr., 2859 (1972).
[11] D. W. Combs, K. Reese and A. Phillips, J. Med. Chem., 38, 4878 (1995).
[12] R. O. Hutchins and N. R. Natale, Org. Prep. Proc. Int., 11, 201 (1979).
[13] Q. Meng and M. Hesse, Synlett, 148 (1990).
[14] E. C. Taylor and J. S. Hinkle, J. Org. Chem., 52, 4107 (1987).
[15] F. Csende and G. Stájer, Heterocycles, 57, 1353 (2002).
[16] G. Bodenhausen and D. J. Ruben, Chem. Phys. Lett., 69, 185, (1980).
[17] A. Bax and M. F. Summers, J. Am. Chem. Soc., 108, 2093 (1986).
[18] T. A. Halgren, J. Comput. Chem., 17, 490 (1996).

